

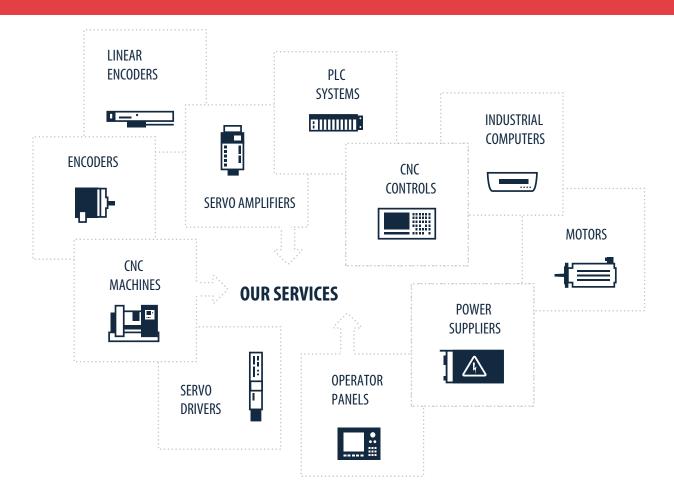
OTHER SYMBOLS:

RGB ELEKTRONIKA AGACIAK CIACIEK SPÓŁKA JAWNA

Jana Dlugosza 2-6 Street 51-162 Wrocław Poland

■ biuro@rgbelektronika.pl

L +48 71 325 15 05

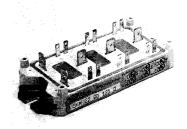


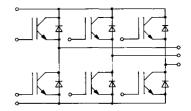
www.rgbautomatyka.pl

YOUR PARTNER IN MAINTENANCE

Repair this product with RGB ELEKTRONIKA

ORDER A DIAGNOSIS


At our premises in Wrocław, we have a fully equipped servicing facility. Here we perform all the repair works and test each later sold unit. Our trained employees, equipped with a wide variety of tools and having several testing stands at their disposal, are a guarantee of the highest quality service.


SEMIKRON

Absolute Maximum Ratings		Values		
Symbol	Conditions 1)	101 D	121 D	Units
VCES		1000	1200	V
Vcgr	$R_{GE} = 20 \text{ k}\Omega$	1000	1200	V
lc	T _{case} = 25/80 °C	22/15		Α
Ісм	T _{case} = 25/80 °C	44/30		Α
V _{GES}		± 20		V
Ptot	per IGBT, T _{case} = 25 °C	150		W
T _i , T _{sta}	1	− 55 · · ·+150		°C
V _{isol}	AC, 1 min	2 500		V
humidity	DIN 40 040	Class F		
climate	DIN IEC 68 T.1	55/150/56		
Inverse D	iode			
IF= - IC		22		Α
IFM= - ICM		44		Α

V(BR)CES VGE = VGE(th) VGE = ICES VGE = VCE = VCE = VGE = VGE =			min ≥ V _C E		max.	Units
VGE(th) VGE = ICES VGE = VCE = VCE = VGE = VGE =	= V _{CE} , I _C = 0		> V/~			
ICES VGE = VCE = VGE =	= 0)	= 1 mA			_	V
Vce =			4,5	5,5	6,5	V
IGES VGE =		$T_j \approx 25 ^{\circ}\text{C}$	_	~	0.5	mA
		T _j = 125 °C	_	~	2	mA
	= 20 V, V		_	~	100	nA
	1	T _j = 25 °C	_	3,5	4	V
	22 A	Tj = 150 °C	-	4,9	5,5	V
<u> </u>	= 20 V, I _C	= 22 A	5,5	9		S
C _{CHC} per I(GBT		-	~	60	pF
Cies) V	GE = 0		-	2	_	nF
	CE = 25 \	1	<u> </u>	160	_	; pF
Cres f	= 1 MHz		-	65	_	рF
LCE				*	20	nH
t _{d(on)}	$t_{CC} = 600$	V	_	40 ³⁾	_	ns
t _r V	/ _{GE} = 15 \	/	-	100 ³⁾		ns
t _{d(off)}	c = 22 A		_	150 ³⁾ /150	(⁴⁾ –	ns
t _f F	RGon = RG	$_{\rm off}$ = 3,3 Ω	_	500 ³⁾ /100	1 ⁴⁾ –	ns
W _{off12} 5) T	j = 125 °(_	1,3 4)	_	mWs
Wotf23 5			-	0,74)		mWs
Inverse Diode S	KM 22 GI	D 101 D				
V _F = V _{EC} I _F = 2	2 A.V _{GE} =	0; (T _i =125 °C)	-	2,2 (1,8)	2,7	V
t_{ir} $T_i =$	25 °C ²⁾		_	_		ns
$ T_i = 1$	125 °C ²⁾		-	100		ns
Q_{rr} $T_i = 2$	25/125 °C	2)		1/4	_	μC
f_s $f_s = t_f$	f / (t _{rr} t _f)	i	_	1 2)		
Inverse Diode S	KM 22 GI	D 121 D				
VF = VEC IF= 2	2 A,V _{GE} =	= 0; (T _{i=} 125 °C)	-	2,7 (2,2)	3,2	V
t_{rr} $T_i =$	25 °C ²⁾	, ,	_	-	_	ns
T _i = -	125 °C ²⁾		_	120	_	ns
Q_{rr} $T_i = 2$	25/125 °C	2)	-	1,1/4,5	-	μC
f_S $f_S = t_1$	$f / (t_{rr} - t_f)$	1	-	1 2)	-	
Thermal Charac						
R _{thic} per lo			-	_	8,0	°C/W
R _{thic} per d			. –	_	1,3	°C/W
	nodule		-	_	0,05	°C/W

SEMITRANS® M IGBT Modules SKM 22 GD 101 D SKM 22 GD 121 D

Features

- MOS input (voltage controlled)
- N channel
- Low saturation voltage
- Very low tail current
- Low temperature sensitivity
- Breakdown proof
- High short circuit capability
- No latch-up
- · Fast inverse diodes
- Isolated copper baseplate
- Large clearances and creepage distances
- UL recognized, file no. E 63 532

Typical Applications

- · DC servo and robot drives
- · Self-commutated inverters
- AC motor speed control
- Uninterruptible power supplies
- General power switching applications
- Pulse frequencies above 15 kHz

Cases and mechanical data see page B 6 - 78

 $^{^{1)}}$ T_{case} = 25 °C, unless otherwise specified $^{2)}$ IF = \sim Ic. VR = 600 V, - dir/dt = 800 A/µs, VGE = 0

resistive load

⁴⁾ inductive load

see fig. 21; $R_{Goff} = 19 \Omega$

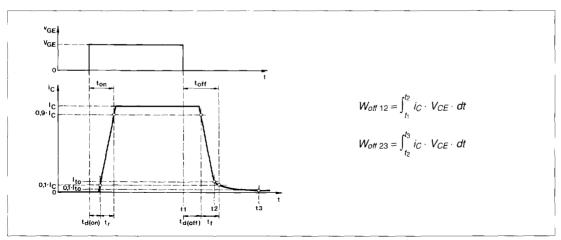


Fig. 21 Switching times and turn-off energies

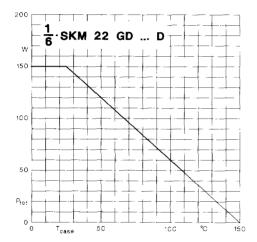


Fig. 22 Rated power dissipation vs. temperature

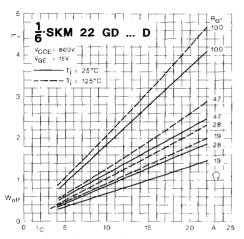


Fig. 24 Turn-off energy dissipation per pulse

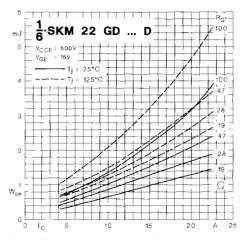


Fig. 23 Turn-on energy dissipation per pulse

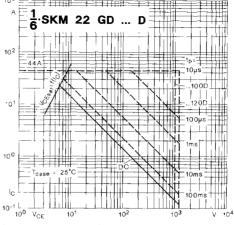


Fig. 25 Maximum safe operating area

SEMIKRON

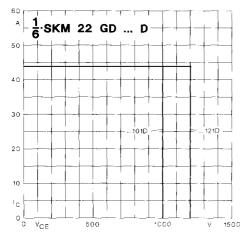


Fig. 26 Turn-off safe operating area

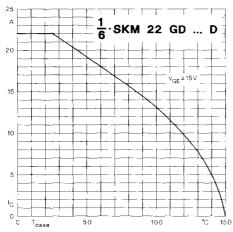


Fig. 28 Rated current vs. temperature

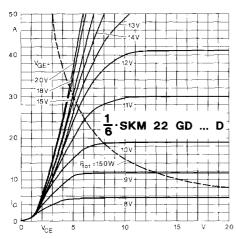


Fig. 30 Output characteristic

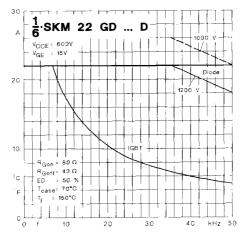


Fig. 27 Rated current vs. pulse frequency

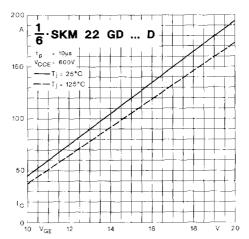


Fig. 29 Short-circuit current vs. turn-on gate voltage

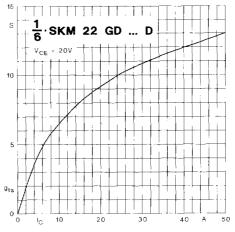


Fig. 31 Forward transconductance

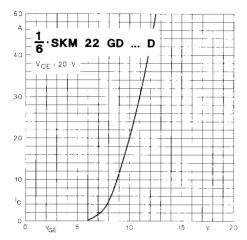


Fig. 32 Transfer characteristic

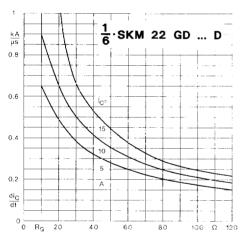


Fig. 34 Rate of rise of collector current

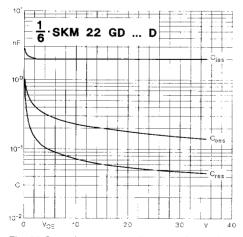


Fig. 36 Capacitances vs. collector-emitter voltage

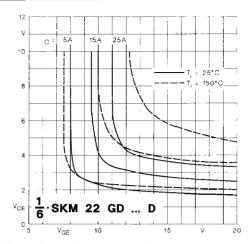


Fig. 33 Saturation characteristics

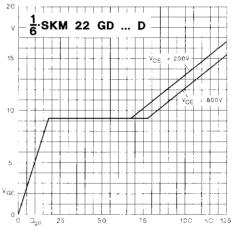


Fig. 35 Gate charge characteristic

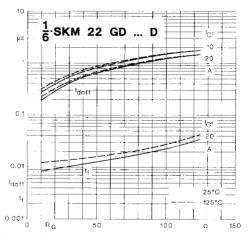


Fig. 37 Switching times vs. gate resistor

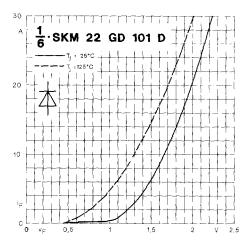


Fig. 38 a Diode forward characteristic

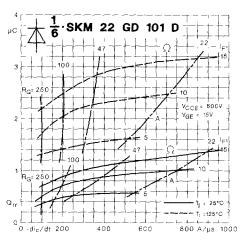


Fig. 39 a Diode recovered charge

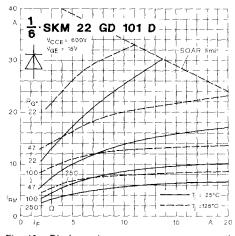


Fig. 40 a Diode peak reverse recovery current (IF)

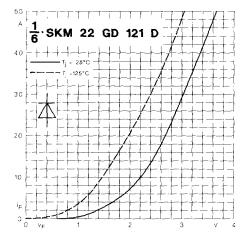


Fig. 38 b Diode forward characteristic

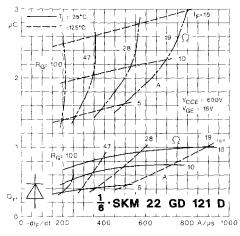


Fig. 39 b Diode recovered charge

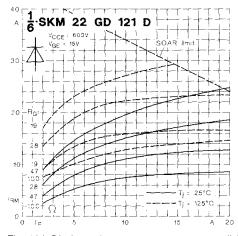


Fig. 40 b Diode peak reverse recovery current (IF)

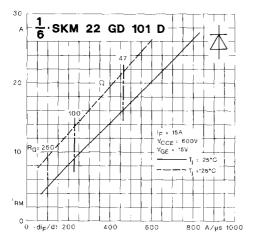


Fig. 41 a Diode peak reverse recovery current (-dir/dt)

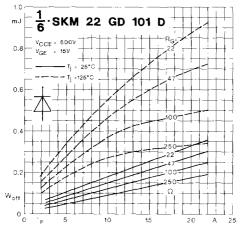


Fig. 42 a Diode turn-off energy dissipation per pulse

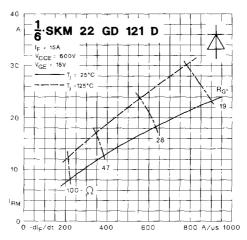


Fig. 41 b Diode peak reverse recovery current (-di_F/dt)

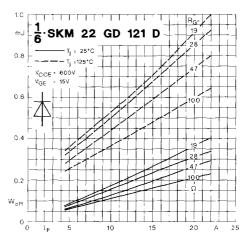


Fig. 42 b Diode turn-off energy dissipation per pulse

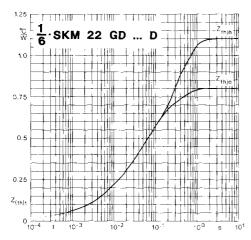


Fig. 51 Transient thermal impedance

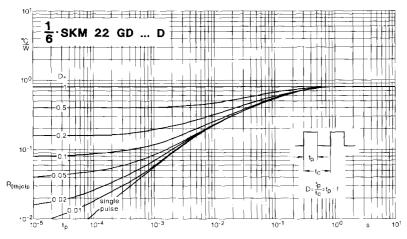


Fig. 52 Thermal impedance under pulse conditions

UL recognized, file no. E 63 532 SKM 22 GD 101 D SKM 22 GD 121 D 65.5 59.5 Case D 28 43.5 2.8x0.5 37.5 6.3x0.8 21.5 15.5 ø2.5×5 93 105 93 82 + 6 3 4 9 10 11 12 59.5 80 100 Dimensions in mm

Mechanical Data					
Symbol	Conditions	i	Units		
		min.	typ.	max.	<u></u>
M ₁	to heatsink, SI Units	4	_	6	Nm
	to heatsink, US Units	35	_	53	lb.in.
a	i	_	_	5x9,81	m/s ²
w		· –	_	190	g

This is an electrostatic discharge sensitive device (ESDS). Please observe the international standard IEC 747-1, Chapter IX.